Department of Geography
College of Arts & Sciences
M.S. & Ph.D. in Geography
2011-2012 Graduate Outcomes Assessment Report

Jon Comer (Coordinator) and Rebecca Sheehan (Assoc. Coordinator)
Report approved by departmental faculty: September 2012

Mission Statement

The Masters and PhD programs in Geography specialize in three broad areas including cultural/historical geography, resource management, and transportation/urban geography. These degree programs are designed for students to master the theoretical knowledge and skills to design, implement, and present original geographic research in oral and written form. Therefore, masters and doctoral students study geographic research methods and analysis, the history and philosophies of geography, and knowledge of current geographic research.

Assessed Student Learning Outcomes

1. Graduate students will develop the ability to communicate geographic information effectively orally and in writing at the appropriate masters or doctoral level.

2. Graduate students will develop apposite knowledge in geographic literature and research at the appropriate masters or doctoral level.

3. Graduate students will develop skills in tools for geographic data collection and methods of analysis at the masters or doctoral level.

4. Advanced graduate students will be able to develop geographic creative components, theses, or dissertations that marshal evidence, analyze data, and synthesize meaningful conclusions.

5. Advanced PhD students will be able to identify and discuss significant geographic trends within their (three) chosen specialty areas of geography.
Student Learning Outcome 1. Graduate students will develop the ability to communicate geographic information effectively orally and in writing at the appropriate masters or doctoral level.

1) Opportunities for students to learn the student learning outcome:

Writing and presenting results are at the heart of most academic work, and accordingly nearly all graduate courses require some type of term paper, many require in-class presentations, and other written work is due appropriate to the course material. In addition, all students must eventually demonstrate their proficiency with a thesis, creative component, or dissertation, and all students must orally present and defend their final research products. Furthermore, all students are required to present their final or near-final research at an academic conference near the end of their degree programs. All these activities provide opportunities for students to learn this outcome.

2) Assessment method used:

Samples of student writing are collected from graduate courses as appropriate. Furthermore, all creative component, thesis, and dissertation proposals are assessed. These artifacts are evaluated using Rubric E (see Plan). Artifacts sampled from graduate courses were evaluated in August 2012 by two faculty members who were compensated with Assessment funds. These two raters scored 55 papers independently and reported their final scores. The scores were then aggregated for each artifact.

Creative component, thesis, and dissertation proposals were evaluated using the same rubric by the students’ research committees (faculty). On average this results in three (M.S.) or four (Ph.D.) assessments per artifact, though some committees exceed these minimums while on occasion a committee member fails to return a rubric.

Additionally, oral communication skills were evaluated using Rubric J by students’ research committee members during all creative component, thesis, or dissertation presentations (proposals and final defenses). Again, the typical number of assessments per student defense was three, but the actual total varies for the reasons stated above.

In the cases of Rubrics E and J for defenses, no norming processes are feasible and each committee member scores students based on his or her own internal criteria. Also, some faculty members serve more heavily on student committees than others, possibly skewing results based on those faculty members’ expectations.
In all assessments, no identifying student information is listed on the rubrics except to differentiate masters from doctoral students.

a) Number of students assessed/not assessed:
 Defenses
 - Proposals: 3/0 M.S. students & 4/0 Ph.D. students who defended
 - Presentations: 4/0 M.S. students & 6/0 Ph.D. students who defended
 Seminar Papers
 - Papers: 36 M.S. & 19 Ph.D. student papers (department-wide)

b/c) Process of student selection and student products evaluated:
 Defenses
 - All thesis/dissertation proposals assessed (Rubric E)
 - All presentations (proposal and final) assessed (Rubric J)
 Seminar Papers (60 artifacts were collected but 5 proved unusable)
 - 5-6 papers are randomly chosen from each graduate course (Rubric E)

d) Process for assessing student products and summarizing results: Process described above; rubric scores are averaged by classification.

3) Summary of assessment evidence/results:

a) Aggregate scores:

 Defenses
 - Written Proposals (Rubric E – scored on a 0-4 point scale):

<table>
<thead>
<tr>
<th>Student Level (n)</th>
<th>Content</th>
<th>Organization</th>
<th>Style & Mechanics</th>
<th>Overall Average</th>
<th># of Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S. (3)</td>
<td>3.20</td>
<td>2.70</td>
<td>2.80</td>
<td>2.90</td>
<td>10</td>
</tr>
<tr>
<td>Ph.D. (4)</td>
<td>3.22</td>
<td>3.28</td>
<td>2.84</td>
<td>3.11</td>
<td>16</td>
</tr>
</tbody>
</table>

 - Oral Presentations (Rubric J – score on a 1-3 point scale):

<table>
<thead>
<tr>
<th>Student Level (n)</th>
<th>Content</th>
<th>Organization</th>
<th>Delivery</th>
<th>Overall Average</th>
<th># of Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S. (4)</td>
<td>2.36</td>
<td>2.57</td>
<td>2.36</td>
<td>2.43</td>
<td>14</td>
</tr>
<tr>
<td>Ph.D. (6)</td>
<td>2.64</td>
<td>2.68</td>
<td>2.36</td>
<td>2.56</td>
<td>23</td>
</tr>
</tbody>
</table>
b) Student strengths and weaknesses: A strength of our doctoral students is their ability to give oral presentations, as the average scores for three of the four categories of Rubric J are above 2.50 on a 1-3 point scale (Level 3 is defined as “Accomplished”, Level 2 is “Competent”, and Level 1 is “Novice”) and all four averages are higher than for masters students. Using the same scale, masters students also perform very well in oral presentations, especially considering that most have far less experience than doctoral students in such presentations.

The writing of all of our graduate students seems marginally proficient, as component averages hover around 3 on a 0-4 point scale (4 is “Advanced”, 3 is “Proficient”, 2 is “Essential”, 1 is “Minimal”, and 0 is “Inadequate”). Interestingly, scores from written proposals were higher than seminar papers, presumably reflecting improvement over the course of the masters and doctoral programs. However, it is hard to compare the two different Rubric E evaluations because proposals were evaluated by the students’ committee members, whereas the same two faculty members assessed all 55 seminar papers. Of note, nine out of thirteen tenure/tenure-track faculty members conducted at least one writing assessment during 2011-12 due to a defense and one faculty member was on five out of ten committees.

Of note, this was the first year the department fully implemented sampling from course papers and assessing all proposals, having about twice the number of artifacts to assess as before and thus providing a more comprehensive view of outcomes.

Scores for each rater across each of the three categories for all 55 scored artifacts are 2.46/2.56 (M.S./Ph.D.) and 3.02/2.61, showing strong agreement that the typical paper rates about a 2.5. In aggregate at the masters level, out of 216 total item assessments (36 artifacts times 2 reviewers times 3 categories), 11.6% were scored as a 4 (the highest score), 44.9% were scored a 3, 35.2% were scored a 2, 7.4% were scored a 1, and
1.0% were scored 0. The overall mean was 2.59. In aggregate at the
doctoral level, out of 114 total item assessments (19 artifacts times 2
reviewers times 3 categories), 23.7% were scored as a 4 (the highest score),
39.5% were scored a 3, 25.4% were scored a 2, 9.6% were scored a 1, and
1.8% were scored 0. The overall mean was 2.74.

Using Rubric E in 2010-11, twelve students (9 M.S., 3 Ph.D.) were assessed
using proposals and 22 seminar papers, without distinction of student level.
Proposal average scores for the three categories ranged between 2.22 and
2.92 while seminar paper scores ranged between 1.98 and 2.29. In 2009-10,
fifteen students were assessed using Rubric E and average scores for the
three categories ranged between 2.37 and 2.90. No distinctions were made
between student classifications. In 2008-09, nine students were assessed and
category scores averaged between 2.79 and 3.11. Thus, scores for writing
have increased slightly over the last year. This year the artifact collection was
the most comprehensive to date, including distinction between masters and
doctoral levels. Therefore, the data may be more representative of student
outcome achievement level. The faculty will continue to monitor writing
achievement and seek ways to improve writing.

4) Faculty interpretation of results:

a) Method of sharing and discussion: First the raw data and then the draft
report were circulated via e-mail for review and comment.

b) Faculty members’ response to results: Concern exists that more than a third
of seminar artifacts evaluated were scored below the level of “proficient” and
that the overall average was just 2.5. This was observed to partially reflect
upon the quality of the students admitted to the program, which is related to
the caliber of students applying to our programs, and how we might raise
both levels. It was also noted that overall writing skills of undergraduates
seem to be diminishing, both at OSU and across the country, affecting the
overall preparation levels of applicants to the master’s program in particular.

There has been much discussion over the past few years about remedies.
While requiring an early-program departmental writing course for all students
would be the best solution, program resources and the limited flexibility of
the MS degree prevent any sort of realistic consideration of this approach.
5) Program improvements implemented/considered in response:

 a) Actions taken resulting from discussion of evidence: None at this time for reasons noted above. Even with more faculty resources, adding another required course to the MS requirements would be difficult.

 b) Actions being considered: Dissemination of rubrics E, F, G, I, and J to students and/or inclusion in student handbook so they understand the metrics against which their oral and written work is being measured.

 c) Additional assessment data needing collection: No new data collection methods are needed, just continued exhaustive collection of artifacts on an annual basis.
Student Learning Outcome 2. Graduate students will develop apposite knowledge in geographic literature and research at the appropriate masters or doctoral level.

1) Opportunities for students to learn the student learning outcome:

In GEOG 5403, the instructor provides students rubrics for the grading/assessment of each assignment, so that students know expectations. The rubrics correspond with the appropriate learning outcomes for the graduate program.

2) Rubrics developed by the instructors of Geography 5403 (Rubric B) and 5413 (Rubric C) are used to assess this knowledge.

In all assessments, no identifying student information is listed on the rubric except to differentiate masters from doctoral students.

 a) Number of students assessed/not assessed:
 GEOG 5403 8/0 M.S. students & 4/0 Ph.D. students
 GEOG 5413 8/0 M.S. students & 4/0 Ph.D. students

 b) Process of student selection: all enrolled students who are GEOG majors.

 c) Student products evaluated:
 - For 5403, the instructor uses student papers, student class presentations, and student-lead class discussions to evaluate student performance.
 - For 5413, the instructor uses student papers, student class presentations, and student midterm and essay exams to evaluate student performance.

 d) Process for assessing student products and summarizing results: Instructors rate rubric items for each learning outcome. Scores are averaged by degree.

3) Summary of assessment evidence/results:

 a) Aggregate scores:

 GEOG 5403 (Rubric B – scored on a 0-4 point scale):

<table>
<thead>
<tr>
<th>Student Level (n)</th>
<th>Standards 1</th>
<th>Standards 2</th>
<th>Standards 3</th>
<th>Standards 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S. (8)</td>
<td>2.50</td>
<td>2.50</td>
<td>3.00</td>
<td>2.88</td>
</tr>
<tr>
<td>Ph.D. (4)</td>
<td>2.25</td>
<td>2.25</td>
<td>3.50</td>
<td>3.25</td>
</tr>
</tbody>
</table>
GEOG 5413 (Rubric C – scored on a 0-4 point scale):

<table>
<thead>
<tr>
<th>Student Level (n)</th>
<th>Standard 1</th>
<th>Standard 2</th>
<th>Standard 3</th>
<th>Standard 4</th>
<th>Standard 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S. (8)</td>
<td>2.75</td>
<td>2.75</td>
<td>3.00</td>
<td>2.88</td>
<td>2.88</td>
</tr>
<tr>
<td>Ph.D. (4)</td>
<td>2.00</td>
<td>1.25</td>
<td>1.75</td>
<td>2.75</td>
<td>2.75</td>
</tr>
</tbody>
</table>

b) Student strengths and weaknesses:

The GEOG 5403 instructor has taught the course four times. Each time, she has observed that students seem better able to communicate their understandings for Standards 1 and 2 orally than in writing. The instructor found that students struggle at both macro and micro levels in writing, particularly in conceptualizing a research project (Standard 3) and in formulating literature reviews (Standard 4). Though the instructor found again that students struggle more with writing literature reviews associated with a research topic that they are developing than a literature review on a topic given to them, students this year seemed to improve their ability to develop a literature review on their own research topic. However, writing groups seemed to falter, meaning students had a difficult time meeting feedback deadlines. Additionally, students performed well in leading research article discussion. Finally, whereas some students embraced (actively pursued) improving their writing skills, others seemed resistant.

In 2010-11, eight students were evaluated in GEOG 5403 with category score averages ranging between 2.63 and 2.88. In 2009-10, ten students were evaluated with category scores averaging between 2.6 and 2.9. In 2008-09 average scores were between 2.56 and 3.00. The same instructor has taught the course all four times, and the results seem to be very consistent over the four years though the range of scores was higher this year due to greater extremes, with a low item average of 2.25 (Ph.D. students on Standards 1 and 2) and a high of 3.50 (Ph.D. students on Standard 3).

In 5413, overall there was a wide range among students in terms of abilities, understanding of the expectations of graduate-level work, and commitment to produce high-quality work. Sloppiness showed in the work of a few students who ignored course policies on citation style and reference formatting several times. Since our students come from such varied
backgrounds, this seems to reflect gaps in their previous training in research techniques and practices.

In terms of content mastery, this year's students also showed less interest in and concern with the details of the history and philosophy of geography. This can be seen in the rubric, which reveals a higher frequency of lower scores on the left side of the rubric than the right side. The pattern of not attending to the details of proper citation mechanics and not grappling with the details of key concepts, individuals, and schools of thought suggests a lack of interest in the material and/or poor time management and/or satisfaction with mediocrity.

With respect to critical thinking, no scores below 2 (Essential) were recorded in the area of recognizing weaknesses or oversights in arguments, evidence, and so on. On the other hand, just two scores of 4 (Advanced) were recorded in this area. Students often expressed concern that they "don't know enough yet to evaluate or assess a published book or article." This demonstrates that they are still gaining comfort with the expectations of creative and critical thought. Since entering graduate students may not have advanced critical thinking abilities, strengthening such abilities probably should be seen as an incremental process achieved with greater success across the students' graduate education than from a single course.

In 2010-11, five students were evaluated in GEOG 5413 with category score averages ranging between 2.60 and 2.80. In 2009-10, eleven students were evaluated with category scores averaging between 2.36 and 3.00. No scores were reported for 2008-09. Scores remain fairly consistent, though like Outcome 1 the lack of distinction between masters and doctoral students in older reports could hide evidence that the mix of students has been partially responsible for fluctuating scores. The same instructor has taught this course since the late 1990s, so one would expect a high degree of year-to-year consistency in the course content and instructor evaluations of student learning.
4) Faculty interpretation of results:

 a) Method of sharing and discussion: First the raw data and then the draft report were circulated via e-mail for review and comment.

 b) Faculty members’ response to results: A faculty member was concerned that students’ critical thinking abilities, especially at the doctoral level, were found (or interpreted) to be lacking. Again, this relates back to comments under Outcome 1 concerning the quality of the students who apply, who we admit, and who subsequently enroll in the program.

5) Program improvements implemented/considered in response:

 a) Actions taken resulting from discussion of evidence:

 In 5403, the additional one-on-one student meetings proved helpful to students in developing their research and improving (some of) their writing skills. The change of students leading research article discussion at various points throughout the semester allowed students to incorporate feedback from earlier facilitations, thus improving student ability to lead discussion.

 In 5413, based on informal feedback from students, the students indicate that they like the new textbook for its conciseness.

 b) Actions being considered:

 For 5403: The instructor found that students were more prepared for one-on-one discussions earlier rather than later in the semester. Therefore, the instructor may place the balance of one-on-one meetings in the first half of the semester. In order to facilitate students staying on top of their responsibilities in writing groups, the instructor will incorporate more oversight via additional turn-ins of reviews as well as check point evaluation of students peers in their respective writing groups.

 For 5413: none at this time.

 c) Additional assessment data needing collection: None at this time.
Student Learning Outcome 3. Graduate students will develop skills in tools for geographic data collection and methods of analysis at the masters or doctoral level.

1) Opportunities for students to learn the student learning outcome:

Instructors of both GEOG 5303 and 6313 devote considerable time and effort to designing exercises and projects that challenge the students to employ data collection and analysis methods with real-world data (instructor-provided as well as obtained by the students).

Extensive grading and feedback is employed to communicate to students where they are not fully grasping the methods and to encourage them to build upon past work and correct past mistakes.

2) Rubrics developed by the instructors of Geography 5303 (Rubric A) and 6313 (Rubric D) are used to assess this knowledge.

In all assessments, no identifying student information is listed on the rubric except to differentiate masters from doctoral students.

 a) Number of students assessed/not assessed:
 GEOG 5303 6/0 M.S. students & 3/0 Ph.D. students
 GEOG 6313 1/0 M.S. students & 5/0 Ph.D. students

 b) Process of student selection: all enrolled students who are GEOG majors.

 c) Student products evaluated:
 - For 5303, the instructor uses student exercises, final project class presentations, final project written report, and course exam.
 - For 6313, the instructor uses student exercises, a fieldwork proposal, and a final field work project.

 d) Process for assessing student products and summarizing results: Instructors rate rubric items for each learning outcome. Scores are averaged by degree.

3) Summary of assessment evidence/results:

 a) Aggregate scores:
b) Student strengths and weaknesses:

For GEOG 5303, the small sample size makes it difficult to make firm statements, but over time this instructor has observed the same basic areas that need constant efforts to enhance student learning, especially in rudimentary areas of data preparation, handling, and documentation (Standard 1) and basic statistical analyses (Standard 2).

While the overall range of category averages is fairly consistent, the topics on which students perform well or poorly seem to fluctuate from year to year. The instructor has rearranged the order of topic presentation somewhat over the past few years but in general the basic content and evaluation remains the same.

In 2010-11, five students were assessed in GEOG 5303 with category average scores ranging between 2.50 and 4.00. In 2009-10, eleven students were assessed with category average scores ranging between 2.73 and 3.72, while in 2008-09 nine students’ assessments ranged between 2.11 and 3.78.

For GEOG 6313, students were bifurcated into groups. One set consisted of highly skilled GIS and quantitative students while the second consisted of a more qualitative, historical-cultural group, with in-depth skills in qualitative methods and synthesis, and less in mapping or statistics. The variation found in rubric scores is representative of the two types of students we attract into the program, mainly GIS students on the one hand and those more interested in historical-cultural geography on the other, with few in between. Also, rubric scores were no doubt also impacted to some extent by some very
strong language barriers faced by several of the students (where English was their second language). At times the instructor felt that language barriers were more of an issue impacting student evaluation in the class than their actual lack of skills in methods. This reflects an issue that needs to be better addressed as graduate students enter the program.

4) Faculty interpretation of results:

a) Method of sharing and discussion: First the raw data and then the draft report were circulated via e-mail for review and comment.

b) Faculty members’ response to results: Other than comments derived from the instructors of these two courses noted in the student strengths and weaknesses (3b above), no other faculty had comments or interpretations.

5) Program improvements implemented/considered in response:

a) Actions taken resulting from discussion of evidence:

The instructor of GEOG 5303 is also the instructor of a prerequisite class (GEOG 3333) which he recently moved 3333 from spring to fall (GEOG 5303 remains in the spring) to allow incoming graduate students to take 3333 as the prerequisite. The instructor integrates the two courses to the extent that 5303 largely picks up where 3333 leaves off, with some review/overlap. The instructor has also worked harder to emphasize areas relating to data documentation and analysis in 3333 that graduate students continue to struggle with in 5303. These changes were all made due to the instructor’s observations about student preparedness; these observations were largely gleaned from grading but reinforced by assessment data.

b) Actions being considered:

For 5303: none at this time.

For 6313: none at this time.

c) Additional assessment data needing collection: None at this time.
Student Learning Outcome 4. Advanced graduate students will be able to develop geographic creative components, theses, or dissertations that marshal evidence, analyze data, and synthesize meaningful conclusions.

1) Opportunities for students to learn the student learning outcome:

All courses in the program should, at some level, teach students these skills. Furthermore, the classic model of graduate education in which a student works closely with his or her advisor to develop a research proposal and then a final product (thesis or dissertation) remains the only logical and obvious way to impart these skills.

2) Creative components, theses, and dissertations provide data to assess these abilities.

Individually, faculty members on creative component (Rubric F), thesis (Rubric G), and dissertation (Rubric I) committees rate students. As with Rubrics E and J reported for Outcome 1, there are typically three faculty members on a master’s student’s committee and four on doctoral committees who are assessing each student.

In all assessments, no identifying student information is listed on the rubric except to differentiate masters from doctoral students.

 a) Number of students assessed/not assessed:
 Creative components
 - 0/0 M.S. students
 Theses
 - 1/0 M.S. students
 Dissertations
 - 2/0 Ph.D. students

 b) Process of student selection: all students undertaking final defense for degree completion are assessed.

 c) Student products evaluated: Creative components, theses, and dissertations

 d) Process for assessing student products and summarizing results: Process described above; rubric scores are averaged for each product (creative component, thesis, or dissertation).
3) Summary of assessment evidence/results:

a) Aggregate scores:

Creative Components (Rubric F – scored on a 0-4 point scale):

<table>
<thead>
<tr>
<th>Student Level (n)</th>
<th>Intro.</th>
<th>Methods</th>
<th>Data & Analysis</th>
<th>Concl.</th>
<th># of Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S. (0)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
</tbody>
</table>

Theses (Rubric G – scored on a 0-4 point scale):

<table>
<thead>
<tr>
<th>Student Level (n)</th>
<th>Intro.</th>
<th>Lit. review</th>
<th>Methods</th>
<th>Data & Analysis</th>
<th>Concl.</th>
<th># of Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S. (1)</td>
<td>3.25</td>
<td>3.75</td>
<td>3.50</td>
<td>3.75</td>
<td>3.25</td>
<td>4</td>
</tr>
</tbody>
</table>

Dissertations (Rubric I – scored on a 0-4 point scale):

<table>
<thead>
<tr>
<th>Student Level (n)</th>
<th>Intro.</th>
<th>Lit. review</th>
<th>Methods</th>
<th>Theory</th>
<th>Concl.</th>
<th>Overall Signif.</th>
<th># of Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. (2)</td>
<td>3.43</td>
<td>2.86</td>
<td>3.57</td>
<td>2.86</td>
<td>3.14</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

b) Student strengths and weaknesses:

One student defended a thesis during the past year so detailed analysis is impossible. However, compared to past years this was a better than average student. In 2010-11, six theses were assessed with category scores for Rubric G ranging between 2.61 and 3.00. In 2009-10, two theses were assessed with category scores averaging either 3.0 or 4.0.

The two dissertations assessed demonstrated solid competency, notably since both students were non-native English-speaking international students. In 2010-11 there was just one dissertation defended during the assessment period, and the data indicated that one student evinced a high level of achievement. In 2009-10 three dissertations were assessed with category scores for Rubric I averaging 3.33, 3.67, or 4.00.
4) Faculty interpretation of results:

 a) Method of sharing and discussion: First the raw data and then the draft report were circulated via e-mail for review and comment.

 b) Faculty members’ response to results:

 Most theses defended (successfully) in the department are generally of an adequate nature, accomplishing the essential goals of the activity but none especially standing out as exemplary works of research. This could be due to a bias on the part of faculty members evaluating master’s students in comparison to Ph.D. students instead of on their own merits.

 However, every year there are only a handful of theses defended, and even fewer dissertations, so it will be very difficult to ever draw strong conclusions from the data or find any statistically-significant information. Instead, the practice of evaluating theses and dissertations using these rubrics, and thinking about the scoring process and the performance of individual students, allows the faculty as research committee members to continue to seek ways to address perceived student deficiencies via one-on-one mentoring.

5) Program improvements implemented/considered in response:

 a) Actions taken resulting from discussion of evidence: None at this time.

 b) Actions being considered: None at this time.

 c) Additional assessment data needing collection: None at this time.
Student Learning Outcome 5. Advanced PhD students will be able to identify and discuss significant geographic trends within their (three) chosen specialty areas of geography.

1) Opportunities for students to learn the student learning outcome:

This is a very individualized area as it relates to students working with their advisors and committee members via courses, directed readings, independent study, etc.

2) Rubrics for PhD students’ written comprehensive exams are used to evaluate student proficiency. Each faculty member of the examination committee completes Rubric H for his/her specific specialty area. Rubrics for evaluation may vary greatly because geography is a diverse discipline.

In all assessments, no identifying student information is listed on the rubric.

 a) Number of students assessed/not assessed:

 Comprehensive Exams 1/0 Ph.D. students

 b) Process of student selection: all Ph.D. students undertaking comprehensive exams are assessed. Generally three of the four members of the student’s committee write exam questions and assess only his/her portion of the exam.

 c) Student products evaluated: Written answers to comprehensive examination questions (essays).

 d) Process for assessing student products and summarizing results: Process described above; rubric scores are averaged.

3) Summary of assessment evidence/results:

 a) Aggregate scores:

 Comprehensive Exams (Rubric H – scored on a 0-4 point scale):

<table>
<thead>
<tr>
<th>Student Level (n)</th>
<th>Subject Knowledge</th>
<th>Content & Organiz.</th>
<th>Style & Mechanics</th>
<th># of Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. (1)</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3</td>
</tr>
</tbody>
</table>
b) Student strengths and weaknesses:

The one student who completed comprehensive exams compared well to past years. In 2010-11, seven students were assessed with category average scores ranging from 2.81 to 3.12. In 2009-10 four students were assessed and average category scores were between 3.00 and 3.33.

4) Faculty interpretation of results:

a) Method of sharing and discussion: First the raw data and then the draft report were circulated via e-mail for review and comment.

b) Faculty members’ response to results:

The faculty would like to see scores notably better than merely “Proficient” (Level 3 on a 0-4 scale). However, the nature of doctoral work in general and comprehensive examinations in particular is very decentralized and unstandardized. While all students perform under the same conditions (three separate 6-hour examinations over different days, closed book, long-essay format), each committee member crafts his/her own questions based on the student’s coursework or other interactions with that committee member and that committee member’s areas of expertise. Hence, the nature, format, and length of each examination can vary greatly, as can the committee members’ expectations. As the examinations represent the culmination of doctoral students’ experiences up to that point in their careers, any standardized efforts to raise these achievement levels would be virtually impossible to design or implement.

5) Program improvements implemented/considered in response:

a) Actions taken resulting from discussion of evidence: None at this time.

b) Actions being considered: None at this time.

c) Additional assessment data needing collection: None at this time.
University Assessment Funds Used

The Department of Geography was awarded $2,400 (plus benefits) for the conduct of assessment towards Outcome 1 (writing ability), specifically the evaluation of student artifacts (papers) collected from graduate courses in Geography during the academic year. The funds were used to compensate two faculty members for their time reading the artifacts collected and scored against Rubric E.

The impact of this award was two-fold. First, most other information gathered during the year is very quickly and efficiently collected by faculty members during or right after the various student defenses (proposals, comprehensive exams, final thesis/dissertation defenses) and is tabulated as the year progresses. However, evaluation of artifacts from graduate seminars must be read and scored individually. Compensating these individuals makes the task somewhat less onerous.

Second, with the ability to compensate individuals, the department was able to entice a faculty member who is not currently on the Graduate/Assessment Committee to engage in artifact review (along with one Committee member). As a consequence, the number of faculty in the department engaged more directly with assessment is expanded beyond the 3-person Graduate/Assessment Committee (now six persons total, including two outside members in 2010-11). This is in addition to nearly all faculty being tangentially involved when they complete other rubrics after defenses, specific faculty members who teach core courses, and ultimately all faculty members are asked to review and comment on this report.

For these reasons the Department of Geography feels the award improves the graduate assessment process in the department, is being put to good use, and will use identical funds in 2012-13 that have already been awarded.